En
  • دکتری (1394)

    الکترونیک

    تربیت مدرس، تهران، ایران

  • طراحی مدارهای مجتمع آنالوگ، RF، موج میلیمتری
  • طراحی مدارهای مجتمع سیگنال مخلوط
  • حلقه های قفل فاز و سنتز کننده فرکانس

    امیر نیک پیک کارشناسی خود را در مهندسی برق گرایش الکترونیک در سال 1385 از دانشگاه شهید بهشتی تهران اخذ کرد. او مدرک کارشناسی ارشد و دکتری خود در رشته میکروالکترونیک را به ترتیب در سال های 1388و 1394 از دانشگاه تربیت مدرس دریافت کرد. او در حال حاضر استادیار گروه الکترونیک دانشگاه تربیت مدرس تهران است. همچنین وی به عنوان استادیار مدعو با دانشگاه بریتیش کلمبیا همکاری دارد. زمینه تحقیقاتی نامبرده مدارهای مجتمع آنالوگ، مایکروویو و تراهرتز است. ایشان جایزه بهترین مقاله دانشجویی (جایگاه سوم) را در سمپوزیوم مدار مجتمع فرکانس رادیویی (IEEE Radio-Frequency Integrated Circuit Symposium) در سال 2015 دریافت کرده است.

    ارتباط

    رزومه

    Even-Harmonic Class-E CMOS Oscillator

    M Barzgari, A Ghafari, A Nikpaik, A Medi
    Journal Papers , , {Pages }

    Abstract

    A 219-to-231 GHz frequency-multiplier-based VCO with~ 3% peak DC-to-RF efficiency in 65-nm CMOS

    Amir Nikpaik, Amir Hossein Masnadi Shirazi, Abdolreza Nabavi, Shahriar Mirabbasi, Sudip Shekhar
    Journal PapersIEEE Journal of Solid-State Circuits , Volume 53 , Issue 2, 2017 October 20, {Pages 389-403 }

    Abstract

    Signal sources at mm-wave and (sub-)terahertz frequencies in CMOS can be classified into two broad categories: harmonic oscillators and oscillators that are based on the frequency multiplication of fundamental sources. This paper shows that frequency-multiplier-based sources potentially have a higher dc-to-RF efficiency than do the popular harmonic oscillators in 65-nm CMOS. To improve the power efficiency of CMOS signal sources that operate near or above the cutoff frequency of the device, design factors including the harmonic current efficiency, the effective output conductance, and the passive losses should be carefully tailored. An architecture is proposed in which: 1) the core voltage-controlled oscillator is optimized to efficiently g

    A quad-core-coupled triple-push 295-to-301 GHz source with 1.25 mW peak output power in 65nm CMOS using slow-wave effect

    Amir Hossein Masnadi Shirazi, Amir Nikpaik, Shahriar Mirabbasi, Sudip Shekhar
    Conference Papers2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) , 2016 May 22, {Pages 190-193 }

    Abstract

    Achieving high output power in (sub-)THz voltage-controlled oscillators (VCOs) has been a severe design challenge in CMOS technology. In this work, an architecture for coupled terahertz (THz) VCOs is presented. The architecture utilizes four coupled triple-push VCOs and combines the generated third harmonic currents using slow-wave coplanar waveguide (S-CPW) at 300 GHz. Coupling four cores increases output power, and use of S-CPW reduces the loss and increases the quality factor of the VCO tank. It is shown that using S-CPW results in ~2.6 dB of lower loss as compared to the conventional CPW or grounded-CPW (GCPW) structures. The VCO is tuned using parasitic tuning technique and achieves 1.7% frequency tuning range (FTR). The proposed struc

    On the design of mm-wave self-mixing-VCO architecture for high tuning-range and low phase noise

    Amir Hossein Masnadi Shirazi, Amir Nikpaik, Reza Molavi, Sam Lightbody, Hormoz Djahanshahi, Mazhareddin Taghivand, Shahriar Mirabbasi, Sudip Shekhar
    Journal PapersIEEE Journal of Solid-State Circuits , Volume 51 , Issue 5, 2016 May , {Pages 1210-1222 }

    Abstract

    Frequency synthesis at mm-wave range suffers from a severe tradeoff between phase noise (PN) and frequency tuning range (FTR). This work presents the analysis and compares the performance of fundamental-mode voltage-controlled oscillators (F-VCOs) to harmonic-mode VCOs (H-VCOs). It is shown that unlike a mm-wave F-VCO, an H-VCO can simultaneously achieve higher FTR and lower PN. An H-VCO architecture, denoted as self-mixing VCO (SMV), is presented where the VCO core generates both the first (fο) and second harmonic (2fο) and then mixes them together to obtain the desired mm-wave third-harmonic (3fο). Use of a Class-C push-push topology as the VCO core enhances the second-harmonic content to improve mixing efficiency, decreases parasitic

    Analysis of flicker noise conversion to phase noise in CMOS differential LC oscillators

    Amir Nikpaik, Abdolreza Nabavi
    Journal PapersInternational Journal of Circuit Theory and Applications , Volume 44 , Issue 2, 2016 February , {Pages 398-417 }

    Abstract

    An analysis of the flicker noise conversion to close‐in phase noise in complementary metal‐oxide semiconductor (CMOS) differential inductance‐capacitance (LC)‐voltage controlled oscillator is presented. The contribution of different mechanisms responsible for flicker noise to phase noise conversion is investigated from a theoretical point of view. Impulse sensitivity function theory is exploited to quantify flicker noise to phase noise conversion process from both tail and core transistors. The impact of different parasitic capacitances inside the active core on flicker noise to phase noise conversion is investigated. Also, it is shown how different flicker noise models for core metal‐oxide semiconductor (MOS) transistors may res

    A dual-tank LC VCO topology approaching towards the maximum thermodynamically-achievable oscillator FoM

    Amir Nikpaik, Abdolreza Nabavi, Amir Hossein Masnadi Shirazi, Sudip Shekhar, Shahriar Mirabbasi
    Conference Papers2015 IEEE Custom Integrated Circuits Conference (CICC) , 2015 September 28, {Pages 04-Jan }

    Abstract

    There exists a fundamental limit in improving the phase noise performance of LC-tank oscillators. Impediments to reach this limit are first discussed, and then a clipping LC VCO topology based on dual tank is presented to mitigate them. This topology can approach within 3 dB of the maximum thermodynamically achievable figure-of-merit (FoM) limit. Compared to conventional class-B/C/D/F oscillators, it is capable of reducing both close-in and far-out phase noise. As a proof of concept, a prototype 4.17-4.95 GHz VCO in a 0.13-μm CMOS process achieves a phase noise of -97 and -143 dBc/Hz at 30 kHz and 3 MHz offset, respectively.

    A Class-C self-mixing-VCO architecture with high tuning-range and low phase-noise for mm-wave applications

    Amir Hossein Masnadi Shirazi, Amir Nikpaik, Reza Molavi, Shahriar Mirabbasi, Sudip Shekhar
    Conference Papers2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) , 2015 May 17, {Pages 107-110 }

    Abstract

    Achieving high tuning-range and low phase-noise simultaneously in mm-wave voltage-controlled oscillators (VCO) has been a severe design challenge. Our architecture, referred herein as a self-mixing VCO (SMV), utilizes a Class-C push-push VCO topology to generate the first (f 0 ) and second harmonics (2f 0 ) and then mixes them together to obtain the desired third harmonic (3f 0 ) component. Compared to a fundamental-mode VCO operating at 3f 0 in mm-wave band, the SMV architecture achieves superior frequency tuning range (FTR) and phase-noise (PN) performance. A Class-C topology enhances the second-harmonic content to improve mixing efficiency, decreases parasitic capacitance and reduces phase noise. A 52.8-to-62.5 GHz SMV prototype is desig

    Transformer feedback millimeter-wave VCO with capacitance cancellation technique in 0.18-?m CMOS

    Milad Ataei, Abdolreza Nabavi, Amir Nikpaik, Javad Meiguni
    Journal PapersIEICE Electronics Express , Volume 8 , Issue 11, 2011 January , {Pages 780-787 }

    Abstract

    This paper describes a design procedure for mm-wave voltage controlled oscillator (VCO), based on large signal behavior of oscillator transconductance. Then, a new structure of LC-VCO is presented, which utilizes a transformer feedback to enhance the transconductance of the core transistors and to cancel the undesired parasitic effects. Using a 0.18-?m RF CMOS technology, the advantage of this VCO is examined by large signal analysis and simulation. The results illustrate improvement of 5dB in phase-noise and 70% in tuning-range, compared to enhanced active gain conventional transformer feedback VCO. Finally, a compact layout for transformer design is proposed.

    Transformer feedback millimeter-wave VCO with capacitance cancellation technique in 0.18-µm CMOS

    M Ataei, A Nabavi, A Nikpaik, J Meiguni
    Journal Papers , , {Pages }

    Abstract

    Very low noise current-shaped optimally coupled CMOS LC quadrature VCO

    Amir Nikpaik, Abdolreza Nabavi
    Journal PapersIEICE Electronics Express , Volume 7 , Issue 8, 2010 January , {Pages 520-526 }

    Abstract

    This paper presents a new low phase noise quadrature voltage-controlled oscillator (QVCO). Coupling phase shifts of 90 in conjunction with center-tapped capacitor impedance transformers are exploited to optimally couple two VCOs. DC and AC path of the switching and coupling pairs are de-coupled to allow operation in saturation for large oscillation amplitudes. The switching and coupling transistor pairs operate in class-C mode which increases the DC to RF efficiency. Also, these transistors alternate from strong inversion to accumulation region, decreasing the intrinsic device flicker noise. Simulations confirm the superiority of the proposed circuit in comparison with the prior published QVCOs in terms of phase noise performance.

    /pro/academic_staff/nik/publication

    دروس نیمسال جاری

    • كارشناسي ارشد
      مدارهاي مجتمع خطي پيشرفته (CMOS) ( واحد)
      دانشکده مهندسی برق و کامپیوتر، گروه الكترونيك

    دروس نیمسال قبل

    • كارشناسي ارشد
      مدارهاي مجتمع خطي (CMOS) ( واحد)
      دانشکده مهندسی برق و کامپیوتر، گروه الكترونيك
    • كارشناسي ارشد
      مباحث ويژه (طراحي سنتزكننده هاي فركانسي) ( واحد)
    • 1399
      مهرابادي, علي
      طراحي يك حلقه ي قفل فاز زيرنمونه بردار با معيار شايستگي بالا و شاخك هاي كم
    • 1400
      عطاپور, علي
    • 1400
      محمدحسين عراقي, محسن
    • 1397
      نيك بخش جهرمي, محمدرضا
      طراحي مولد سيگنال FMCW براي كاربرد رادار خودرو
      داده ای یافت نشد
    • جایزه مقاله برتر (جایگاه سوم)، سمپوزیوم RFIC، ایالات متحده آمریکا، 2015.

    مهم

    جدید

      اطلاعیه ای درج نشده است